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Abstract
By using conformal-field theory, we classify the possible irrelevant operators
for the Ising model with nearest-neighbour interactions on the square and
triangular lattices. We analyse the existing results for the free energy and its
derivatives and for the correlation length, showing that they are in agreement
with the conformal-field theory predictions. Moreover, these results imply
that the nonlinear scaling field of the T T̄ operator, where T is the energy–
momentum tensor, vanishes at the critical point. Several other peculiar
cancellations are explained in terms of a number of general conjectures. We
show that all existing results on the square and triangular lattices are consistent
with the assumption that only nonzero-spin operators are present.

PACS numbers: 05.50.+q, 11.25.Hf

1. Introduction

The role of the irrelevant operators in the two-dimensional Ising model with nearest-neighbour
interactions has been extensively discussed in the literature. The first important result is due
to Aharony and Fisher [1] who showed, by using the exact results for the free energy and
the magnetization in infinite volume, that the first correction to the susceptibility could be
explained in terms of purely analytic corrections, i.e. without introducing any contribution
due to irrelevant operators. The conclusions of Aharony and Fisher were strengthened by
the analysis of [2], which showed that the behaviour of χ up to O(t4) was fully compatible

0305-4470/02/234861+28$30.00 © 2002 IOP Publishing Ltd Printed in the UK 4861

http://stacks.iop.org/ja/35/4861


4862 M Caselle et al

with the absence of irrelevant operators5. These results gave rise to the idea (which has never
received the status of an explicit conjecture as far as we know, but which has been commonly
accepted in the statistical-mechanics community) that no contribution from irrelevant operators
is present in the free energy of the two-dimensional Ising model with nearest-neighbour
interactions. Of course, such a statement cannot be generically correct, since the lattice Ising
model shows explicit violations of rotational invariance that must be due to nonrotationally
invariant irrelevant operators. In particular, in [4], from the analysis of the mass gap, irrelevant
corrections with renormalization-group (RG) dimension y = −2 (respectively y = −4)
were clearly identified on the square (respectively triangular) lattice. Of course, the question
remained if these operators did contribute to the free energy.

The analysis of the susceptibility of [2] has been recently extended in [5, 6]. In [6],
thanks to an impressive progress in the construction and analysis of the series expansions for
the susceptibility, it was clearly shown that at least two irrelevant operators contribute to the
expansion of the susceptibility for h = 0 near the critical point. However, while these results
show without doubts the presence of irrelevant operators, they do not characterize them. In
particular, the identification of these irrelevant operators with the corresponding quasiprimary
fields of the Ising conformal field theory (CFT) is still an open problem. In this paper, we try
to make some progress in this direction.

We shall address this problem in three steps:

(1) First, we shall discuss the CFT that describes the Ising model at the critical point. We
shall list all operators that may appear as irrelevant ones in the lattice Ising model.

(2) Then, we shall compare the CFT predictions with the exact results for the free energy
and for the magnetization and with the results for the susceptibility reported in [6]. We
shall see that these results are in perfect agreement with the RG and CFT, but have
also peculiar features that can be explained if we make some additional hypotheses. The
existence in the nearest-neighbour Ising model of exact transformations that map the high-
temperature phase onto the low-temperature one (duality or inversion transformations)
plays here a major role, indicating that these peculiar features are strictly related to the
(partial) solubility of the model.

(3) The conclusions reached in the analysis of the infinite-volume free energy and of
its derivatives are further strengthened by the analysis of the mass gap (exponential
correlation length) and of the finite-size scaling of the free energy and of its thermal
derivatives at the critical point (we use here the results of [7–9]). Finally, we analyse the
finite-size scaling of the susceptibility at the critical point, showing that the dependence
on the boundary conditions is in perfect agreement with the conjectures we have made.

Since the analysis is rather involved and the reader could be lost in the technical details
of the forthcoming sections, we anticipate here our main findings:

• We do not find any evidence for the presence of the leading spin-zero irrelevant operator
predicted by CFT, namely T T̄ where T is the energy–momentum tensor. This result was
already anticipated in [10–12] for the two-dimensional square-lattice Ising model and
in [13] for the one-dimensional Ising quantum chain. Also, on the triangular lattice we
do not observe the next-to-leading spin-zero irrelevant operator that has RG dimension
y = −6.

• As mentioned above, we find unambiguous evidence of the presence of nonzero-spin
irrelevant operators in the spectrum. This is not surprising, since such operators are those

5 We should also mention that recently a similarly unexpected cancellation was found in the free energy on the
critical isotherm T = Tc [3].
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that describe the lattice breaking of the rotational symmetry. What is surprising is that all
results can be explained in terms of the following conjecture:

“The only irrelevant operators which appear in the two-dimensional nearest-
neighbour Ising model are those due to the lattice breaking of the rotational
symmetry.”

In some sense, it can be considered as a renewed version of the original idea of Aharony
and Fisher.

Note that this conjecture applies only to the Ising model with nearest-neighbour
interactions and it is not known whether other formulations of the Ising model satisfy the
same conjecture (probably they don’t!). Moreover, one must in principle distinguish between
different lattice types. We find that both the square-lattice and the triangular-lattice results are
compatible with the conjecture, but it remains to be understood if it may also hold on other
less canonical lattices, for instance for honeycomb or Kagomé lattices.

This paper is organized as follows. In section 2 we describe the model, set our notations,
and report the basic results that are needed in the following analysis. In section 3 we report
the CFT analysis of the model at criticality and classify the possible irrelevant operators. In
section 4 we discuss the infinite-volume free energy and its derivatives with respect to h for
h = 0. We show that the exact results and the results of [6] have properties that cannot be
anticipated from CFT and RG alone. In order to explain them, we put forward four conjectures
that are justified in section 4.2 on the basis of the available results. In section 4.3, on the basis of
the conjectures we have made, we obtain some general predictions for the susceptibility on the
triangular lattice. The extension of the results of [6] to such a lattice is very important in order
to understand the validity of our conjectures. In section 5 we discuss the critical behaviour
of the exponential correlation length. The analysis on the triangular lattice is particularly
interesting and gives strong support to the conjecture we have presented above. In sections 6
and 7 we consider the finite-size scaling of several quantities at the critical point. We show
that the existence of an inversion (duality) transformation and the general conjecture presented
above explain some peculiar features of the results found in [7–9]. In section 8 we summarize
the results and discuss some open problems.

2. The Ising model with nearest-neighbour interactions

The two-dimensional Ising model is defined by the partition function

Z =
∑
σi=±1

eβ
∑

〈n,m〉 σnσm+h
∑

n σn (2.1)

where the spin variables σn are defined on the sites n of a regular lattice and take the values
{±1}. The model has two phases: the low-temperature one in which the Z2 symmetry is
spontaneously broken and the high-temperature one in which the symmetry is restored. The
two phases are separated by a critical point which is located at β = βc.

In the following we will study several observables. We define6 the free-energy density
F(β, h), the energy per site E(β, h), the specific heat C(β, h), the magnetization per site
M(β, h) and the susceptibility χ(β, h):

F(β, h) ≡ lim
N→∞

1

N
log(Z(β, h)) (2.2)

6 Note that our definitions differ by powers of the temperature and by signs from the usual thermodynamic ones.
This is irrelevant for our purposes.
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E(β, h) ≡ −∂F (β, h)
∂β

(2.3)

C(β, h) ≡ ∂2F(β, h)

∂β2
(2.4)

M(β, h) ≡ ∂F (β, h)

∂h
(2.5)

χ(β, h) ≡ ∂2F(β, h)

∂h2
. (2.6)

In (2.2) N is the number of sites of a finite lattice.

2.1. The square lattice

On the square lattice

βc = 1
2 log (

√
2 + 1) = 0.440 6868 . . . (2.7)

and we will measure the deviations from the critical temperature in terms of the variable τ
introduced in [6]:

τ = 1

2

(
1

sinh 2β
− sinh 2β

)
. (2.8)

For β = βc, τ = 0, while τ > 0 (respectively τ < 0) for β < βc (respectively β > βc).
We will use the exact expressions for the free-energy density and magnetization in zero

field given by [14]

F(τ, 0) = 1
2 log(2 cosh2 2β) + F sing(τ ) (2.9)

M(τ, 0) = (1 − k(τ )2)1/8 (2.10)

where

F sing(τ ) =
∫ π

0

dθ

2π
log

[
1 +

(
1 − cos2 θ

1 + τ 2

)1/2
]

(2.11)

k(τ ) = (
√

1 + τ 2 + τ )2. (2.12)

In this work, the duality transformation that maps the high-temperature phase onto the low-
temperature phase plays an important role. The variable τ transforms naturally under such
transformation, i.e. τ → −τ . It is easy to verify that

k(−τ ) = 1

k(τ )
(2.13)

F sing(−τ ) = F sing(τ ) (2.14)

k(−τ )−1/8(−τ )−1/8M(−τ, 0) = k(τ )−1/8τ−1/8M(τ, 0). (2.15)

By using the exact expressions for the free energy and the magnetization, we define two
functions a(τ) and b(τ) that will play a major role below. They are defined by requiring

F(τ, 0) = −Aa(τ)2 log |a(τ)| +A0(τ ) (2.16)

M(τ, 0) = Bb(τ)|a(τ)|1/8 (2.17)
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where a(τ), b(τ ) and A0(τ ) are regular functions7 of τ , a(τ) ≈ τ for τ → 0, b(0) = 1 and
A and B are constants. Explicitly, we find

a(τ) = τ

(
1 − 3

16
τ 2 +

137

1536
τ 4 +O(τ 6)

)
(2.18)

b(τ) = k(τ )1/8
(

1 +
11

128
τ 2 − 3589

98 304
τ 4 +O(τ 6)

)
(2.19)

and

A = 1

2π
B = 21/4. (2.20)

Under duality,

a(−τ ) = −a(τ) k(−τ )−1/8b(−τ ) = k(τ )−1/8b(τ). (2.21)

Although the susceptibility in zero field has not been computed exactly, its behaviour for
h = 0, τ → 0 is quite well known. In [6] the asymptotic behaviour of χ for h = 0 in both
phases was obtained:

χ±(τ ) = C±|τ |−7/4k(τ )1/4F̂±(τ ) + Bf (τ) (2.22)

where F̂±(τ ) are regular functions of τ ,

Bf (τ) =
∞∑
q=0

�√q	∑
p=0

b(p,q)τ q(log |τ |)p (2.23)

and τ is defined in (2.8). Here χ+(τ ) (χ−(τ )) is the susceptibility in the high- (low-)
temperature phase.

By a careful numerical study, Orrick et al [6] found two additional important properties
of F̂±(τ ). First, F̂±(τ ) are even functions of τ . There is no rigorous proof, but we note that
a similar property is satisfied by the two-point function in the large-x limit, see section 5.1.
Moreover, the results of [6] can be written as

F̂±(τ ) = [a(τ)τ−1]−7/4[b(τ)k(τ )−1/8]2G±(a(τ )) (2.24)

where G±(z) are even functions of z, and a(τ) and b(τ) are defined in equations (2.16) and
(2.17). Explicitly

G±(z) = 1 − 1

384
z4 +

(
f
(6)
± − 49

1536

)
z6 +O(z8) (2.25)

where f (6)± are numerical coefficients reported in [6]. Note the absence of the term of order
z2, a result that will play a major role below.

2.2. The triangular lattice

On the triangular lattice

βc = 1
4 log 3 = 0.274 6531 . . . (2.26)

We measure the deviations from the critical temperature in terms of the variable τ defined by

τ ≡ 1 − 4v + v2

√
2v(1 − v)

(2.27)

7 We will call a function regular if it has an expansion in integer powers of τ for τ → 0.
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where v ≡ tanhβ. Under the inversion transformation that maps the high-temperature phase
onto the low-temperature phase,

v → v′ =
(√

1 − v + v2 − √
v

(1 − v)

)2

(2.28)

it transforms simply as τ → −τ . It is thus the analogue of variable (2.8) introduced in [6].
In zero field, the free-energy density is given by [15]

F(τ, 0) = 1
2 log(4 sinh 2β) + F sing(τ ) (2.29)

where

F sing(τ ) = 1

2

∫ 2π

0

∫ 2π

0

dφ1

2π

dφ2

2π
log

[
3 + τ 2 − cosφ1 − cosφ2 − cos(φ1 + φ2)

]
(2.30)

the magnetization by (2.10), where [15]

k(τ ) = (1 − v)3(1 + v)

4v
√
v(1 − v + v2)

. (2.31)

Under τ → −τ , relations (2.13), (2.14) and (2.15) hold on the triangular lattice too.
From the expressions of the magnetization and of the free energy, we can compute the

functions a(τ) and b(τ) that are defined by (2.16) and (2.17). In this case, we obtain

a(τ) = τ − τ 3

24
+

47τ 5

10 368
− 161τ 7

248 832
+

113 191τ 9

1074 954 240
+O(τ 11) (2.32)

b(τ) = k(τ )1/8
(

1 +
11τ 2

288
− 671τ 4

165 888
+

10 115τ 6

15 925 248
− 31 791 497τ 8

275 188 285 440
+O(τ 10)

)
(2.33)

and

A = 1

2
√

3π
B =

(
8

3

)1/8

. (2.34)

As in the square-lattice case, the functions a(τ) and b(τ) satisfy the duality relations (2.21).

3. Conformal field theory analysis

3.1. Primary and secondary fields

The Ising model at the critical point is described by the unitary minimal CFT with central
charge c = 1/2 [16]. Its spectrum can be divided into three conformal families characterized
by different transformation properties under the dual and Z2 symmetries of the model. They
are the identity, spin and energy families and are commonly denoted as [I ], [σ ], [ε]. Let us
discuss their features in detail.

• Primary fields. Each family contains an operator which is called a primary field (and
gives the name to the entire family). Their conformal weights are hI = 0, hσ = 1/16 and
hε = 1/2 respectively. Since the RG eigenvalues are related to the conformal weights by
y = 2 − h− h̄, all primary fields are relevant.

• Secondary fields. All the remaining operators of the three families (which are called
secondary fields) are generated from the primary ones by applying the generatorsL−i and
L̄−i of the Virasoro algebra defined by

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (3.1)
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It can be shown that, by applying a generator of index k,L−k or L̄−k , to a field φ (where
φ = I, ε, σ depending on the case) of conformal weight hφ , a new operator of weight
h = hφ + k is obtained. In general, any combination of L−i and L̄−i is allowed. If we
denote with n the sum of the indices of the generators of type L−i and with n̄ the sum of
those of type L̄−i , the conformal weight of the resulting operator is hφ + h̄φ + n + n̄. The
corresponding RG eigenvalue is y = 2 − hφ − h̄φ − n− n̄.

• Nonzero-spin states. The secondary fields may have nonzero spin, which is given by
the difference n − n̄. In general, one is interested in quantities that are invariant under
the lattice rotation group, and thus in operators that belong to its identity representation.
Since the lattice invariance group is a finite subgroup of the rotation group, in the lattice
discretization of a scalar operator, operators that do not have spin zero, i.e. transform
nontrivially for general rotations, may appear. The invariance group of the square lattice
is the finite subgroup C4 (cyclic group of order 4), which has four representations of
‘discrete’ spin 0, 1, 2, and 3. An observable that transforms as a spin-j representation
under the full rotation group belongs to a representation of discrete spin j (mod 4) under
the action of C4. Therefore, a lattice scalar operator is expressed as a sum of continuum
operators of spin 4j, j ∈ N. Analogously, on a triangular lattice the rotation group is
broken to the cyclic group of order 6,C6. In this case, a lattice scalar operator is expressed
in terms of continuum operators of spin 6j, j ∈ N.

• Null vectors. Some of the secondary fields disappear from the spectrum due to the null-
vector conditions (see [16]). In particular, this happens for one of the two states at level 2
in the [σ ] and [ε] families and for the unique state at level 1 in the identity family. From
each null state one can generate, by applying the Virasoro operators, a whole family of
null states. Hence, at level 2 in the identity family there is only one surviving secondary
field, which can be identified with the stress–energy tensor T (or T̄ ). The second null
vector in the σ family appears at level 3 while in the ε family it appears at level 4. This
fact will play an important role in the following.

• Secondary fields generated byL−1. Among all secondary fields, a particular role is played
by those generated by the L−1 Virasoro generator. L−1 is the generator of translations
on the lattice and as a consequence, it has zero eigenvalue on translationally invariant
observables. Another way to state this result is that L−1 can be represented as a total
derivative, and as such it gives zero if applied to an operator which is the integral of a
suitable density over the lattice, i.e. a translationally invariant operator.

• Quasiprimary operators. A quasiprimary field |Q〉 is a secondary field which satisfies
the equation

L1|Q〉 = 0. (3.2)

This condition eliminates all the secondary fields which are generated by L−1. The
quasiprimary operators are the only ones that may appear in translationally invariant
quantities. These fields will play a central role in our analysis since they are the natural
candidates to be irrelevant operators of the model8.

8 The reason is that non-quasiprimary fields can always be rewritten (using, if needed, the null vector identities),
as L−1 acting on some combination of Virasoro generators and thus their contribution in the perturbed action is
zero. Note however that this does not mean that these states do not exist, it is only when they are integrated over
the two-dimensional plane that they give a vanishing contribution. Indeed, if we look at the model in the transfer
matrix framework, we see that the spectrum also contains non-quasiprimary states. This fact may have important
consequence if one looks at the Ising quantum chain model (which belongs to the same universality class of the
two-dimensional Ising model). In this case, it has been claimed (see for instance [13, 17]) that also non-quasiprimary
fields contribute to the scaling function. For an updated review on quantum spin chains and their CFT description,
see [18].
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3.2. Quasiprimary states and irrelevant operators

It is easy to construct, by using (3.2), all the low-lying quasiprimary states. A simple way to
obtain these states (see for instance [16]) is to count, level by level, the dimension dn of the
Verma module of each conformal family. Then it is easy to show using (3.2) that the number
of quasiprimary states at a given level n of the module is given by the difference dn − dn−1.
It is clear that, in this calculation, a central role is played by the location of the null vectors.
Indeed, for the Ising model we have a (relatively) small number of quasiprimary states in the
lowest levels (which in turn is the reason why our analysis can be predictive) which is due to
the fact that the lowest levels of the three conformal family of the Ising model are crowded
with null vectors. This does not happen for higher order minimal models. In these models,
one finds instead a much richer spectrum of low-lying quasiprimary states.

Here is the list of all quasiprimary operators for the Ising model up to level 10:

• In the identity family, there is one quasiprimary state at levels 2, 4 and 6 and two
quasiprimary states at levels 8 and 10.

• In the energy family, there is one quasiprimary state at levels 4, 6, 7, 8 and 9 and two
quasiprimary states at level 10.

• In the [σ ] family, there is one quasiprimary state at levels 3, 5, 6, 7 and 8 and two
quasiprimary states at levels 9 and 10.

For all these states, it is possible to give the exact expression in terms of the Virasoro generators
(even if it becomes increasingly cumbersome as the level increases). For instance, in the
identity family one finds

QI
2 = L−2|I 〉 (3.3)

QI
4 = (

L2
−2 − 3

5L−4
) |I 〉 (3.4)

at levels 2 and 4 respectively, where we have introduced the notation Qη
n to denote the

quasiprimary state at level n in the η family.
Let us now construct from theQη

n listed above the irrelevant operators which could appear
in any lattice translationally invariant quantity. We list below those that have RG eigenvalue
|y| < 10. We will classify them by their spin, since operators of different spin appear on
different lattices. Spin-zero operators are relevant in all cases, spin-(4n) operators appear on
the square lattice, while spin-(6n) operators play a role only on the triangular lattice.

The spin-zero operators are the following:

• Identity family. QI
2Q̄

I
2 whose weight is 4 and RG eigenvalue is −2;QI

4Q̄
I
4 whose weight

is 8 and RG eigenvalue is −6.
• Energy family. Qε

4Q̄
ε
4 whose weight is 9 and RG eigenvalue is −7.

• Spin family. Qσ
3 Q̄

σ
3 whose weight is 6 + 1

8 and RG eigenvalue is −(4 + 1
8

)
; Qσ

5 Q̄
σ
5 whose

weight is 10 + 1
8 and RG eigenvalue is −(8 + 1

8

)
.

On the square lattice, we should consider the spin-four operators:

• Identity family. QI
4 + Q̄I

4 whose weight is 4 and RG eigenvalue is −2; QI
6Q̄

I
2 + QI

2Q̄
I
6

whose weight is 8 and RG eigenvalue is −6.
• Energy family. Qε

4 + Q̄ε
4 whose weight is 5 and RG eigenvalue is −3.

• Spin family. Q̄σ
3Q

σ
7 + Q̄σ

7Q
σ
3 whose weight is 10 + 1

8 and RG eigenvalue is −(8 + 1
8

)
.

Also the spin eight contribute on the square lattice at this order:

• Identity family. QI
8 + Q̄I

8 whose weight is 8 and RG eigenvalue is −6;
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• Energy family. Qε
8 + Q̄ε

8 whose weight is 9 and RG eigenvalue is −7;
• Spin family. Qσ

8 + Q̄σ
8 whose weight is 8 + 1

8 and RG eigenvalue is −(6 + 1
8

)
.

On the triangular lattice, we should consider the spin-six operators:

• Identity family. QI
6 + Q̄I

6 whose weight is 6 and RG eigenvalue is −4; Q̄I
2Q

I
8 + Q̄I

8Q
I
2

whose weight is 10 and RG eigenvalue is −8;
• Energy family. Qε

6 + Q̄ε
6 whose weight is 7 and RG eigenvalue is −5;

• Spin family. Qσ
6 + Q̄σ

6 whose weight is 6 + 1
8 and RG eigenvalue is −(4 + 1

8

)
.

Higher-order spins contribute operators with y � −10. For instance, in the identity family
one should consider the spin-12 operator QI

12 + Q̄I
12 whose weight is 12 and RG eigenvalue

is −10.
Among these operators, the most important ones are: QI

2Q̄
I
2 that has spin zero and y = −2

and should be considered both for the square and the triangular lattice;QI
4 +Q̄I

4 (with y = −2)
and QI

6 + Q̄I
6 (with y = −4) that are the leading operators that break rotational invariance

on the square and on the triangular lattice respectively. The scalar QI
2Q̄

I
2 operator can be

explicitly related to the energy–momentum tensor as follows: QI
2Q̄

I
2 = T T̄ . The nonzero-

spin operators have a more complicated structure (since they involve higher order secondary
fields, they are actually a mixture of different operators). In order to clarify their role, we shall
neglect this complication and denote them (with a slight abuse of notation) with the following
combinations of the energy–momentum tensor: QI

4 + Q̄I
4 = T 2 + T̄ 2, QI

6 + Q̄I
6 = T 3 + T̄ 3.

These operators will play an important role in the following discussion.
As a general remark, it is important to note that, since only even-spin operators are of

interest, the dimensions y of the operators satisfy the following conditions: y ∈ 2Z for the
identity family y ∈ 2Z + 1 for the energy family and y ∈ 2Z − 1

8 for the spin family.
Finally, we want to discuss the role of the symmetries. On the lattice, there are two exact

symmetries that will play an important role:

• Z2 symmetry: (h → −h). Under this transformation the operators belonging to the
identity and to the energy family are even, while the operators belonging to the spin
family are odd.

• Duality (inversion) symmetry for h = 0. This transformation maps the high-temperature
phase onto the low-temperature one and with our choice of variable τ (see (2.8) and
(2.27) for the square and the triangular lattice respectively) it corresponds to the mapping
τ → −τ . Under this transformation (see, e.g., appendix E of [16]) the identity operators
are even, the energy operators are odd, while the [σ ]-family operators do not have a
well-defined behaviour.

4. Infinite-volume zero-momentum quantities for h = 0

In this section, using the results of section 3, we shall derive the scaling behaviour of the free
energy, magnetization and susceptibility at h = 0 and we will compare these results with the
exact expressions for F(τ, 0) and M(τ, 0) and with the results of [6] on the square lattice.
We will verify that the structure of these expressions is in agreement with the RG predictions,
although the complicated logarithmic dependence found in [6] requires an extension of the
usual scaling expressions. Moreover, the exact results and those of [6] have additional
properties that are specific to the lattice nearest-neighbour Ising model and are probably not
satisfied by a generic model belonging to the Ising universality class. All these properties can
be explained if we make some general conjectures: they will be presented in section 4.1.
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We present a general analysis for the square and the triangular lattice. In particular, we
will show that the extension of the work of [6] to the triangular lattice would provide strong
support for (or rule out) our conjectures.

4.1. Renormalization-group predictions and conjectures

We wish now to derive the asymptotic behaviour of F(τ, 0),M(τ, 0) and χ(τ, 0) by using the
RG approach and the classification of the irrelevant operators presented in section 3.2. We
write the free energy as [19]

F(τ, h) = fb(τ, h) + |ut |2/yt f±

({
uj

|ut |yj /yt
})

+ |ut |2/yt log |ut |f̃ ±

({
uj

|ut |yj /yt
})

(4.1)

where fb(τ, h) is a regular function9 of τ and h2, ut and uj are nonlinear scaling fields
associated with the temperature and with all other operators having corresponding dimensions
yt = 1 and yj . They include the nonlinear scaling fields associated with the magnetic field with
dimension yh = 15/8 and those associated with all irrelevant operators. Note the presence of
the logarithmic term due to a resonance10 between the thermal and the identity operator which
is responsible for the log-type singularity in the specific heat [19]. The nonlinear scaling
fields are analytic functions of τ and h that have well-defined transformation properties under
h → −h. Those associated with the identity and the energy family are even under the
transformation, while those associated with the [σ ] family (and thus uh too) are odd. For our
purposes, we can expand

ut(τ, h) = µt(τ ) +
h2

2
λt (τ ) +O(h4) (4.2)

ueven
j (τ, h) = µj(τ ) +

h2

2
λj (τ ) +O(h4) (4.3)

uσj (τ, h) = hvj (τ ) +O(h3). (4.4)

The Z2-even operators belong to the identity and the energy family and thus, for h = 0, they
have well-defined properties under duality:

µt(−τ ) = −µt(τ )
µεj (−τ ) = −µεj (τ ) (4.5)

µIj (−τ ) = µIj (τ ).

In general, we expect µIj (0) �= 0, and therefore we can normalize these scaling fields by
requiring µIj (0) = 1. On the other hand, the energy-family scaling fields—including that
associated with the temperature—vanish for τ = 0 and thus we normalize them by requiring
µεj (τ ) ≈ τ . The spin-family fields are normalized by requiring vj (0) = 1.

Let us now present our basic conjectures that will be justified in section 4.2 on the basis of
the exact expressions for the free energy and the magnetization and of the results of [6]. Two
conjectures will be presented in different forms. The analysis reported here of the infinite-
volume quantities gives only evidence for the weaker versions (c1) and (d0). Evidence for (c2)

9 Sometimes it is assumed that the bulk free energy depends on the temperature only [20, 21]. However, this
conjecture is inconsistent with the rigorous results available for χ . See [22] for a critical discussion.
10 Since secondary fields belonging to a given family differ by integers, we expect additional multiple resonances
and additional terms with higher powers of log |ut | in equation (4.1). Such higher powers have indeed been found in
the analysis of χ [6].
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will be provided in section 6, and evidence for (d1)/(d2) in section 5.2. As we will discuss,
the analysis of χ on the triangular lattice should be able to discriminate between (d1) and (d2).

Let us now give the list of conjectures:

(a) Consider a [σ ]-family operator, and let vj (τ ) be the corresponding nonlinear scaling field
for h → 0, cf (4.4). Then, either vj (τ ) = 0, i.e. the corresponding operator is decoupled,
or

k(−τ )−1/8vj (−τ ) = k(τ )−1/8vj (τ ). (4.6)

Such a relation should be satisfied by vh(τ ) since the corresponding operator does not
decouple.

(b) The functions f± and f̃ ± are even functions of the nonlinear scaling fields associated
with the energy family.

(c1) The functions f̃± depend only on the Z2-even scaling fields.
(c2) Stronger version of the previous one: the functions f̃ ± are constant. Such a conjecture

was already made by Aharony and Fisher [1].
(d0) The nonlinear scaling field of theTT̄ operator vanishes at the critical point: uT T̄ (0, 0) = 0.
(d1) Stronger version of (d0): the operator T T̄ decouples, i.e. uT T̄ (τ, h) = 0 for all τ and h.
(d2) Stronger version of (d1): the only irrelevant operators that appear in the Ising model are

the non-rotationally invariant ones.

We remark that these conjectures (in their stronger form) are sufficient to explain the existing
data, but are by no means necessary. For instance, consider the three conjectures (d). All
existing square-lattice results require only (d0). Conjectures (d1) and (d2) are supported by
the results on the triangular lattice that will be presented in sections 5.2 and 6. There we will
showµT T̄ (τ ) = o(τ 4), which provides evidence for (d1), andµ(0) = 0 for the scalar operator
QI

4Q̄
I
4 with y = −6, which is our motivation for the conjecture (d2). We wish also to stress

that, at least in principle, some properties may hold only on a very specific lattice type and
thus the observed properties on the triangular lattice may not extend to the square-lattice case.

Let us note that in the analysis of the scaling corrections the spin of the operator will play
an important role. As we already mentioned in section 3.1, all operators of spin 4j (respectively
6j ) appear in (4.1) on the square (respectively triangular) lattice, j ∈ N. However, because of
the rotational invariance of the critical theory, nonzero-spin operators contribute only at second
order in the Taylor expansion of the infinite-volume free energy in powers of uj |ut |−yj /yt .

4.2. The square lattice

Let us now use the exact results for F(τ, 0) and M(τ, 0) and the results of [6] to provide
evidence for the conjectures we made in the previous section.

Setting h = 0 in (4.1) we see that all scaling fields associated with the [σ ] family disappear.
Since the dimensions of the operators belonging to the energy and to the identity family are
integers, we predict

F(τ, h = 0)± = f0(τ ) + f1(τ ) log |τ | (4.7)

where f0(τ ) and f1(τ ) have a regular expansion in τ . The functions f0(τ ) and f1(τ ) can in
principle depend on the phase, but from the exact solution we know that this is not the case.
This implies

φ({xj }) ≡ f+
({xj }I,ε; {xj = 0}σ ) = f−

({xj }I,ε; {xj = 0}σ ) (4.8)

φ̃({xj}) ≡ f̃ +
({xj }I,ε; {xj = 0}σ ) = f̃ −

({xj }I,ε; {xj = 0}σ ) . (4.9)
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Using (2.14), we find that f1(τ ) is even in τ , a property that is certainly satisfied if the
conjecture (b) is true, i.e. φ̃({xj}) is an even function of the energy-family scaling fields. If
this is true, the energy-family scaling fields would begin to contribute to second order.

Let us now consider the magnetization in the low-temperature phase. From (4.1) we
obtain (τ < 0)

M(τ) =
∑
k∈[σ ]

|µt |2−yk vkρk

({
µjµ

−yj
t

}I,ε)
+ log |µt |

∑
k∈[σ ]

|µt |2−yk vkρ̃k

({
µjµ

−yj
t

}I,ε)

(4.10)

where the functions ρk and ρ̃k depend only on the scaling fields of the Z2-even operators,
and the sums are over all [σ ]-family operators. Now, if yk is the dimension of an operator
belonging to the [σ ] family, yk = −1/8 + 2n where n is an integer. Therefore, we predict

M(τ) = (−τ )1/8M0(τ ) + (−τ )1/8M1(τ ) log(−τ ) (4.11)

whereM0(τ ) andM1(τ ) are regular functions of τ . Now, the exact solution givesM1(τ ) = 0,
a property that is satisfied if the conjecture (c1) is true. Setting M1(τ ) = 0, we find a perfect
agreement with the exact result.

However, the exact result satisfies an additional property: using (2.15), we have

k(−τ )−1/8M0(−τ ) = M0(τ )k(τ )
−1/8. (4.12)

By using the fact that yj = 2n− 1
8 (respectively yj = 2n− 1, yj = 2n) for a [σ ] (respectively

[ε], [I ]) family operator, n ∈ Z, it is easy to verify that such an equation is automatically
satisfied if the conjectures (a) and (b) are true.

Let us consider the susceptibility. By differentiating (4.1) and using equations (4.8) and
(4.9), we obtain

χ± = ∂2fb

∂h2

∣∣∣∣
h=0

+ µtλt [2φ({xj }) + φ̃({xj })] + µ2
t

∑
ik∈[σ ]

ψik,±({xj})vivk|µt |−yi−yk

+µ2
t

∑
k∈[I ],[ε]

∂φ

∂xk
({xj })|µt |−yk

(
λk − ykµkλtµ

−1
t

)
+ 2µtλt φ̃({xj}) log |µt |

+µ2
t log |µt |

∑
ik∈[σ ]

ψ̃ ik,±({xj })vivk|µt |−yi−yk

+µ2
t log |µt |

∑
k∈[I ],[ε]

∂φ̃

∂xk
({xj})|µt |−yk

(
λk − ykµkλtµ

−1
t

)
(4.13)

where all functions depend only on the irrelevant Z2-even scaling fields through xj = µjµ
−yj
t ,

φ and φ̃ are defined in equations (4.8) and (4.9), and ψik,± and ψ̃ ik,± are second-order
derivatives of f± and f̃ ± with respect to the [σ ]-family fields. The sums over Z2-even
fields include only the irrelevant ones—the temperature should be excluded—while the sums
over [σ ]-fields include both the magnetic and the irrelevant ones. Since yj = −1/8 + 2n, n
integer, for [σ ] operators and yj integer for Z2-even operators, this result implies the expansion

χ± = |τ |−7/4A±(τ ) + |τ |−7/4 log |τ |B±(τ ) + C(τ) +D(τ) log |τ | (4.14)

where all functions are regular and only A± and B± depend on the phase.
If we now use conjecture (c1) we obtain ψ̃ ik,± = 0, and thereforeB±(τ ) = 0 in agreement

with the results of [6].
By comparing (4.14) with (2.22), we find Bf (τ) = C(τ) + D(τ) log |τ |, so that Bf (τ)

should be identical in both phases, in agreement with the results of [6]. However, we predict



Irrelevant operators in the two-dimensional Ising model 4873

only a single log |τ |, while in [6] all powers appear. This means that our scaling ansatz (4.1)
is not correct: there are additional resonances that give rise to a more complicated logarithmic
structure.

For F̂±(τ ) we find

F̂±(τ ) = 1

C± k(τ )
−1/4τ 4

(µt
τ

)2+1/4 ∑
ik odd

ψik,±({xj })vivkµ−yi−yk−1/4
t . (4.15)

By using the conjectures (a) and (b), we can show that F̂±(τ ) is even in τ , in agreement with
the results of [6]. Note that the functions λj (τ ) instead have no specific properties under
τ → −τ and indeed Bf (τ) contains all powers of τ .

Let us now discuss in more detail the consequences of equations (2.24) and (2.25). First,
note that the most important irrelevant operator of the [σ ] family

(
Qσ

3 Q̄
σ
3

)
has dimension

y = −4 − 1/8. Since yh = 2 − 1/8, it gives corrections of order τ 6. Thus, neglecting
corrections of this order, we need to consider only the magnetic operator (the leading one)
among the [σ ]-family contributions. Second, among the Z2-even operators, the leading ones
are T T̄ and T 2 + T̄ 2, both with y = −2. However, T 2 + T̄ 2 is a spin-four operator and
thus it may contribute to rotationally invariant quantities only to second order, i.e. it gives
corrections of order τ 4. Therefore, the leading correction (of order τ 2) can only be due to T T̄ .
Accordingly, we write

φ̃ = −A (1 + φ1µ
2
t µT T̄ +O(τ 4)

)
(4.16)

ρh = B
(
1 + ρh1µ

2
t µT T̄ +O(τ 4)

)
(4.17)

ψ±,hh = C± (1 + ψ±,hh1µ
2
t µT T̄ +O(τ 4)

)
. (4.18)

Then, sinceµT T̄ (τ ) is an even function of τ , we have for the functionsG±(z) defined in (2.24)

G± = 1 + (ψ±,hh1 − 2ρh1 + φ1)z
2µT T̄ (0) +O(z4). (4.19)

By comparing with (2.25), we see that one of the following two conditions must be satisfied:
either (ψ±,hh1 −2ρh1 +φ1) = 0 orµT T̄ (0) = 0. Thus, unless a miraculous cancellation occurs,
the absence of the z2 term implies our conjecture (d0).

Equation (2.25) implies also that at least one operator contributes to order τ 4 and a
different one at order τ 6. Note that it is not possible that the contribution of order τ 6 is due
to the nonlinear scaling field(s) already contributing to order τ 4. Indeed, if this were the case,
the contribution O(z6) in (2.25) would be independent of the phase as the term O(z4) is11.
This result is perfectly compatible with the CFT results of section 3 that predict

(1) at order τ 4, the spin-four operator T 2 + T̄ 2 appears;
(2) at order τ 6, three operators may appear: the spin-zero operators QI

4Q̄
I
4 and Qσ

3 Q̄
σ
3 , and

the spin-four operatorQε
4 + Q̄ε

4.

Note that T 2 + T̄ 2 and Qε
4 + Q̄ε

4 have y = −2 and y = −3 respectively; however, since
they have spin four, they may contribute only at second order, and therefore at O(τ 4) and
O(τ 6) respectively. Finally, note that (2.25) is also in perfect agreement with the stronger
conjecture (d2), that only non-rotationally invariant operators are present. In this case, we
have an operator that starts contributing at order τ 4 and a second one appearing at order τ 6.

At higher orders, the situation becomes more involved. Besides the contributions of the
expansion of the scaling fields appearing at lower orders, at order τ 8 one must consider the
11 Note that this independence does not follow from the RG expressions, since the functions ψ+ and ψ− are expected
to be different.
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fourth power of the nonlinear scaling field associated with T 2 + T̄ 2. There is also a spin-zero
operatorQε

4Q̄
ε
4 with y = −7. However, because of the conjecture (b), we expect this operator

to contribute only to second order and therefore starting at O(τ 14).
It is interesting to note that, if the conjecture (d0) is true, equations (2.16) and (2.17)

provide the first terms of the expansion of µt(τ ) and vh(τ ) in powers of τ . Explicitly

µt(τ ) = τ

(
1 − 3

16
τ 2 +O(τ 4)

)
(4.20)

vh(τ ) = k(τ )1/8
(

1 +
11

128
τ 2 +O(τ 4)

)
. (4.21)

Such expansions already appear in [22], but assume a very simple form in the variable τ .
Finally, let us see what information we can obtain fromBf (τ). As we have already noted,

our expressions are not compatible with (2.23) because of the presence of higher powers of
log τ . We assume here that our parametrization of the free energy gives the correct expression
of Bf (τ) up to terms of order τ 4, since at this order a log2 τ appears. Under this assumption,
we can compute the first terms in the expansion of λt (τ ). We compare the terms proportional
to log |τ |, writing

2µt(τ )λt (τ )φ̃({0}) =
3∑
q=1

b(1,q)τ q +O(τ 4). (4.22)

Using φ̃(0) = −1/(2π), this gives for λt (τ )

λt (τ ) = k(τ )1/4
∞∑
k=0

λtkτ
k (4.23)

where

λt0 = −0.101 637 648 975 279 876 579 045 203 385 062 636 255 484 896 85

λt1 = 0 (4.24)

λt2 = −0.000 912 698 513 043 685 863 484 370 258 366 986 546 254 622.

It remains unclear why, by factoring out the term k(τ )1/4, the linear term in λt (τ ) vanishes.
Note that the value of λt2 is correct only if the conjecture (d0) holds.

4.3. The triangular lattice

It is very interesting to extend the results of [6] to the triangular lattice. Indeed, in this case it
is possible to make a much stronger test of the conjectures we have made.

First, it is easy to see that the exact results [15] for the free energy and the magnetization
are fully compatible with the conjectures we have made. Then, let us derive the behaviour
of the susceptibility. Equation (4.14) is lattice independent and it implies (apart from the
logarithmic structure) (2.22). Therefore, the expansion on the triangular lattice should also
have the form (2.22). Also, according to conjectures (a) and (b), we expect F̂ (τ ) to be even in
τ , where now τ is defined in (2.27): some evidence will be provided in section 5.2. Therefore,
(2.24) should hold with G±(z) even in z.

Finally, we wish to predict which powers of z should be absent in the expansion ofG±(z).
This depends on the operators that can appear. CFT predicts the following:

(1) At order τ 2 we should consider T T̄ ;
(2) At order τ 6 we should consider the spin-zero operatorsQI

4Q̄
I
4 and Qσ

3 Q̄
σ
3 ;
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(3) At order τ 8 we should consider the spin-six operatorQI
6 + Q̄I

6;
(4) At order τ 10 we should consider the spin-zero operators QI

6Q̄
I
6,Q

σ
5 Q̄

σ
5 and the spin-six

operatorsQε
6 + Q̄ε

6, Qσ
6 + Q̄σ

6 .

As we have already mentioned, spin-six operators contribute to second order in rotationally
invariant quantities. Moreover, we have not indicated powers of lower-order operators and the
[ε]-family operator Qε

4Q̄
ε
4 that, according to conjecture (b), should contribute corrections of

order τ 14.
From this classification, we have the following possibilities:

(1) If T T̄ is present, the term of order z2 should be present barring miraculous cancellations.
(2) If the conjecture (d0) is true, as on the square lattice, while the conjecture (d1) is false

so that µT T̄ (τ ) ∼ τ 2, then the term of order z2 should be absent and the term of order z4

should be nonvanishing.
(3) If the conjecture (d1) is valid, both terms of order z2 and z4 should be absent;
(4) If the stronger conjecture (d2) is true, i.e. if only non-rotationally invariant operators are

present, the term of order z6 is also absent. More precisely, this cancellation would imply
µ(0) = 0 for QI

4Q̄
I
4, v(0) = 0 for Qσ

3 Q̄
σ
3 , and µT T̄ (τ ) ∼ o(τ 4). We expect the term

of order z8 to be nonvanishing since at this order the spin-six operator QI
6 + Q̄I

6 should
contribute.

The triangular lattice is therefore a better testing ground for our conjectures. Indeed,
conjecture (d1) requires two coefficients to vanish, a very nontrivial fact. Moreover, we are
able to distinguish between conjectures (d1) and (d2).

5. The large-distance behaviour of the two-point function

In this section, we will study the large-distance behaviour of the two-point function on the
square lattice, reviewing in part the results of [12], and on the triangular lattice. The square-
lattice analysis will confirm the validity of conjecture (d0), i.e. µT T̄ (0) = 0. Much more
interesting is the analysis on the triangular lattice which will show that µT T̄ (τ ) = o(τ 4), thus
providing strong support to conjecture (d1). We will also find that the subleading corrections
due to the zero-spin operator with y = −6 are absent, in agreement with the conjecture
presented in the introduction (conjecture (d2) of section 4.1).

5.1. The square lattice

Let us now consider the large-distance behaviour of the two-point function for h = 0, τ > 0.
For large |x| it has the form [23]

G(x, y; τ ) = Z(τ)

∫ π

−π

dk1

2π

dk2

2π

eik1x+ ik2y

�s(k) +Ms(τ)2
(5.1)

where

�s(k) = 4 sin2 k1

2
+ 4 sin2 k2

2
(5.2)

Z(τ) =
√

8τ 1/4k(τ )1/4(1 + τ 2)1/8 = 2(k(τ )2 − 1)1/4 (5.3)

Ms(τ)
2 = 4(

√
1 + τ 2 − 1). (5.4)

From these expressions, we can compute the angle-dependent correlation length ξ(θ) defined
from the large-distance behaviour of the two-point function along a direction forming an angle
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θ with the side of the lattice. We obtain

ξ(θ) = 1√
2a(τ)

[
1 +

a(τ)2

48
cos 4θ

+ a(τ)4
(

1

3072
− 1

320
cos 4θ − 5

9216
cos 8θ

)
+O(a(τ)6)

]
(5.5)

where a(τ) is defined by equations (2.16) and (2.18). As already observed in [4], this expansion
shows the presence of a correction of order τ 2 due to the leading irrelevant operator breaking
rotational invariance. However, the interesting additional feature is that this term is the only
one, i.e. there is no correction due to the rotationally invariant subleading operators [12]. This
result is naturally interpreted: the correction we find is due to the spin-four operator T 2 + T̄ 2

and there is no contribution due the scalar operator T T̄ . At order τ 4 there is a scalar term, but
this does not require the presence of a scalar operator: the angle-independent contribution can
be interpreted as due to the square of the spin-four operator T 2 + T̄ 2. Therefore, result (5.5)
supports conjecture (d0) and is compatible with the stronger ones (d1) and (d2).

In [12] we also analysed the on-shell renormalization constant Z(τ) and found no terms
of order τ 2. We thought this to be a good indication of the absence of both T T̄ and T 2 + T̄ 2.
We now believe that this conclusion was a little bit too hasty. First, (5.3) implies

Z(τ) =
√

8a(τ)1/4b(τ)2 (5.6)

with no corrections to all orders. Of course, we cannot take this as an indication that all
operators are absent. Moreover, there is also a conceptual problem: Z(τ) is defined from
the behaviour of the two-point function at p = −iM(τ) and thus we should consider the
momentum-dependent nonlinear scaling fields as we did in [12] for the second-moment
correlation length. As we shall see in the next section, no particular simplification occurs in
the triangular case, and we find corrections of order τ 2 to expression (5.6). Thus, the observed
cancellation is accidental and does not have any connection with the operator structure of the
model.

Finally, we present an argument to make plausible the fact that the functions F̂±(τ ) are
even in τ . If the short-distance part Bf (τ) were absent, such a property would follow from
the symmetry

(−τ )−1/4k(−τ )−1/4χ±(−τ ) = τ−1/4k(τ )−1/4χ±(τ ). (5.7)

The interesting observation is that this symmetry property is satisfied by the large-distance
expression ofG(x, y; τ ). Indeed, using the expressions reported above we immediately verify
that

(−τ )−1/4k(−τ )−1/4G(x, y; −τ ) = τ−1/4k(τ )−1/4G(x, y; τ ). (5.8)

5.2. The triangular lattice

We now repeat the same analysis on the triangular lattice. The large-distance behaviour of
the two-point function along a side of the lattice was computed in [24]. Such expression was
generalized in [25] where it was conjectured that the large-distance behaviour was given by
the propagator of a Gaussian field on a triangular lattice, in analogy with the square-lattice
expression. Therefore,

G(x, y; τ ) =
√

3

8π2
Z(τ)

∫ π

−π
dk1

∫ 2π/
√

3

−2π/
√

3
dk2

eik1x+ ik2y

�t(k) +Mt(τ)2
(5.9)
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where

�t(k) = 4 − 4

3
cos k1 − 8

3
cos

k1

2
cos

√
3k2

2
(5.10)

Mt(τ)
2 = 8

3

(
cosh 1

2µl − 1
) (

cosh 1
2µl + 2

)
(5.11)

Z(τ) = 8
3A(τ)

−1/4(k(τ )2 − 1)1/4(A(τ) +
√
A(τ) + 1)1/2 (5.12)

µl(τ ) = logA(τ) (5.13)

and

A(τ) ≡
(√

1 − v + v2 − √
v√

v(1 − v)

)2

. (5.14)

The conjectured form (5.9) was checked in the high-temperature limit [25], by computing the
expansion of G(x, y; τ ) in powers of β to order β15.

Note that, under τ → −τ , we have

A(−τ ) = 1

A(τ)
(5.15)

and

Mt(−τ )2 = Mt(τ)
2 (5.16)

Z(−τ )(−τ )−1/4k(−τ )−1/4 = Z(τ)τ−1/4k(τ )−1/4. (5.17)

From the large-distance behaviour of the two-point function,we can obtain the angle-dependent
correlation length ξ(θ) taken along a direction forming an angle θ with a side of the triangles.
We have, in terms of the function a(τ) defined in (2.16) and (2.32),

ξ(θ) =
√

3

2a(τ)

[
1 +

a(τ)4 cos 6θ

6480
− a(τ)6 cos 6θ

54 432

+
a(τ)8

55 987 200
+
a(τ)8 cos 6θ

559 872
− a(τ)8 cos 12θ

18 662 400

]
. (5.18)

This result provides a very strong check of conjecture (d2) presented in the introduction.
Indeed, the first correction term appears only at order a(τ)4 and is proportional to cos 6θ . It
is thus unambiguously related to the spin-six operator T 3 + T̄ 3. At order a(τ)6 there is also a
correction term, but it is again proportional to cos 6θ and thus it should be associated with a
spin-six operator. Since no new operator appears at this order, it must be identified with an
analytic correction due to the operator T 3 + T̄ 3. At order a(τ)8 a constant term and a cos 12θ
appear, but they may be due to the square of the operator T 3 + T̄ 3.

In conclusion, this calculation provides very strong evidence for the absence of T T̄ ,
conjecture (d1)—more precisely it proves that µT T̄ = o(τ 4)—and also for the conjecture
(d2). Indeed, if (d1), but not (d2), were true, the spin-zero operatorQI

4 + Q̄I
4 would contribute

to order τ 6, giving rise to an angle-independent term proportional to a(τ)6. The absence
of such a term supports the validity of (d2).

Interestingly enough, this calculation allows the computation of the first analytic term in
the scaling field µ1(τ ) that is associated with T 3 + T̄ 3. Indeed, if conjecture (d2) is correct,
the function a(τ) given in (2.32) coincides with the temperature scaling field at h = 0 up to
terms of order τ 9, i.e. µt(τ ) = a(τ) +O(τ 9). Then, we write

ξ(θ) =
√

3

2

1

µt(τ )

(
1 + αµt (τ )4µ1(τ ) cos 6θ +O(τ 8)

)
(5.19)
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and fix α by requiring µ1(0) = 1. Then

µ1(τ ) = 1 − 5
42τ

2 +O(τ 4). (5.20)

Considering now the function Z(τ), no particular simplification occurs and a correction term
of order a(τ)2 appears. Explicitly

Z(τ) = 16

3 × 61/4
a(τ)1/4b(τ)2

(
1 +

a(τ)2

18
+ · · ·

)
. (5.21)

As we have already discussed in section 5.1, the presence of the quadratic term is probably
related to the presence of a momentum-dependent contribution to the nonlinear scaling fields.

Finally, we note that (5.8) is also satisfied on the triangular lattice, as may be easily shown
by using (5.16) and (5.17). Again, this gives a plausibility argument for the fact that the
function F̂ (τ ) appearing in (2.22) is even on the triangular lattice too.

6. Finite-size scaling at the critical point

Recently, there has been much effort in understanding the behaviour of the Ising model in
a finite box or strip of size L at the critical point h = τ = 0, computing the finite-size free
energy fL, energy EL, specific heat CL and inverse mass gap ξL. The results obtained are the
following:

• In [26] and [7], fL and ξL were computed on a strip of width L for several different
lattices: it was found that these two quantities have an expansion of the form

L2(fL − f∞) =
∞∑
n=0

fn

L2n
(6.1)

ξL

L
=

∞∑
n=0

sn

L2n
. (6.2)

Note that in the expansion only even powers of L appear. Moreover, on a triangular lattice
f1 = f3 = 0 and s1 = s3 = 0.

• Salas [9] and Izmailian and Hu [8] computed fL,EL,CL for a square lattice L ×M for
fixed aspect ratio ρ = M/L, extending the results of [27, 28]. They found

L2(fL − f∞) =
∞∑
n=0

fn(ρ)

L2n
(6.3)

EL = −
√

2 +
∞∑
n=0

en(ρ)

L2n+1
(6.4)

CL = 8

π
logL +

√
2EL +

∞∑
n=0

hn(ρ)

L2n
. (6.5)

The specific heat has also been computed for a square lattice with Brascamp–Kunz
boundary conditions in [29]. However, in this case translation invariance is lost in one
direction and thus we cannot apply straightforwardly the results presented here.

In this section, we want to explain the general features of these results.
In finite volume, the general scaling expression (4.1) can be generalized by writing (see,

e.g., [20, 21, 30, 31])

F(τ, h;L) = fb(τ, h) +
1

L2
W
({
ujL

yj
})

+
1

L2
logLW̃

({
ujL

yj
})

(6.6)
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where we assume that the bulk contribution is independent of L or, more plausibly, that it
depends on L only through exponentially small corrections [20, 21], and the functions W
and W̃ depend on all scaling fields. Equation (6.6) cannot be correct in general. Indeed, the
results of [6] indicate the presence of powers of log |τ | in the susceptibility, which imply the
presence of powers of logL in (6.6). These corrections should be relevant only if we consider
derivatives of the free energy with respect to h, while here we set h = 0 from the beginning.
In this particular case, (6.6) should be correct.

If h = 0, the [σ ]-family scaling fields do not contribute, so that (6.6) becomes

F(τ, 0;L) = fb(τ, 0) +
1

L2
W
({
µj(τ )L

yj
})

+
1

L2
logLW̃

({
µj(τ )L

yj
})

(6.7)

where the scaling functions depend only on the Z2-even scaling fields. By using (4.5) and the
fact that the RG eigenvalues yj are even for the identity family and odd for the energy family,
we obtain

W
({
µj (−τ )(−L)yj

}) = W
({
µj (τ )L

yj
})

(6.8)

and an analogous formula for W̃ . Therefore, apart from the bulk contribution, even derivatives
of F with respect to τ contain only even powers of L, while odd derivatives contain only odd
powers of L. This explains the particular structure of the results obtained by [7–9] since

EL = 2
√

2
∂F

∂τ

∣∣∣∣
τ=0

(6.9)

CL =
√

2EL + 8
∂2F

∂τ 2

∣∣∣∣
τ=0

. (6.10)

In particular, (6.10) explains why the odd terms in the expansion of CL are related to those of
the energy.

For what concerns the logarithms, only CL shows a logarithmic dependence, and only at
leading order in L. This may be explained if

W̃
({
µj (τ )L

yj
}) = Ŵ (µt (τ )L). (6.11)

By using the results for the specific heat at criticality and in the infinite-volume limit, we can
compute the asymptotic behaviour of Ŵ (x) for x → 0 and x → ∞. For x → 0, the results
for CL imply

Ŵ (x) ≈ 1

2π
x2 +O(x4) (6.12)

while, in order to obtain the correct infinite-volume limit, we should have

Ŵ (x) ≈ 1

2π
x2(1 +O(x−2)). (6.13)

These two results make natural the conjecture that

Ŵ (x) = 1

2π
x2 (6.14)

for all x. There are several consequences of these results:

• Relation (6.11) and conjecture (c1) imply conjecture (c2), i.e. the function f̃ in (4.1) is
a simple constant, as originally suggested by Aharony and Fisher [1]. If this is the case,
the function µt(τ ) coincides with the function a(τ).

• If (6.14) is correct, we predict that in the expansion of ∂2nF/∂τ 2n at the critical point there
is only one logarithmic term, with a coefficient that can be computed from the expansion
of a(τ).
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Let us now use (6.7) to determine the corrections to the leading behaviour. We obtain

L2fL = L2fb(0, 0) +W({xj }) (6.15)

∂F

∂τ
(0) = ∂fb

∂τ

∣∣∣∣
τ=h=0

+
1

L2

∑
i∈[ε]

LyiWi({xj}) (6.16)

∂2F

∂τ 2
(0) = ∂2fb

∂τ 2

∣∣∣∣
τ=h=0

+
1

L2

∑
ik∈[ε]

Lyi+ykWik({xj}) +
1

L2

∑
i∈[I ]

µ2,iL
yiWi({xj }) + 2A logL

(6.17)

where we write µj(τ ) = µj (0) + τµ1,j + 1
2τ

2µ2,j , the functionsWi and Wik depend only on
the identity-family scaling fields through xj ≡ µj (0)Lyj = Lyj , and the constantA is defined
by (2.16). We have also used the normalization conditions µ1,i = 1 for the energy-family
fields and µj(0) = 1 for the identity-family fields.

Let us now discuss which corrections should be expected. The important point is that here,
at variance with the infinite-volume case, nonzero-spin operators can contribute to first order.
Indeed, the box breaks the rotational invariance down to the lattice invariance and therefore
the mean value of a lattice operator that is not rotationally invariant but has the symmetries of
the lattice is nonzero. This implies that no missing term is expected on the square lattice, in
agreement with the exact results. Indeed, the lowest operator is the spin-four operator T 2 + T̄ 2

that has y = −2 and belongs to the identity family, and is therefore able, alone, to give rise to
all observed corrections.

On the triangular lattice instead simplifications are expected. Consider first the free energy
fL. The absence of the term proportional to L−2, i.e. f1 = 0, impliesµT T̄ (0) = 0, confirming
once again conjecture (d0). The next-to-leading operator belonging to the identity family is
the spin-six T 3 + T̄ 3 that has y = −4. Therefore, in (6.15) the T 3 + T̄ 3 gives rise to corrections
of order L−4n. The absence of the 1/L6 term requires an additional cancellation, i.e. µ(0) for
the operator QI

4Q̄
I
4 that has y = −6 and zero spin, thereby supporting our conjecture (d2).

At order 1/L8 there appears a new operatorQI
2Q̄

I
8 + Q̄I

2Q
I
8 that gives, together with T 3 + T̄ 3,

corrections of order L−8n−4m and thus indistinguishable from those of T 3 + T̄ 3. At order
1/L10, at least the spin-12 operator T 6 + T̄ 6 appears and therefore we expect all corrections
of the form L−10n−4m to be nonvanishing.

An analogous cancellation is expected for EL. For EL the leading correction terms are
1

L
µ1,tWt ({xj}) +

1

L7
µ1,1W1({xj }) + · · · (6.18)

where µ1(τ ) is the scaling field of the spin-six operatorQε
6 + Q̄ε

6 that has y = −5. Reasoning
as before, on the basis of conjecture (d0) alone, we expect no correction of order 1/L3 but the
presence of all other terms. Analogously in CL the L−2 correction should be absent.

The results for the correlation length show the same pattern of the free energy. The fact
that s1 = s3 = 0 on the triangular lattice provides additional evidence for the absence of
spin-zero operators in the theory.

It is interesting to note that a similar finite-size scaling analysis was performed more
than 10 years ago for the one-dimensional Ising quantum chain which belongs to the same
universality class of the two-dimensional Ising model (for a discussion of their connection,
see [32]). In particular, in [33] the finite-size behaviour of the free energy and of the mass
spectrum of the model was obtained and then compared in [13, 17] with the predictions of
perturbed CFT (see [18] for an updated review of the subject).

Remarkably enough, also in this case the contribution of the T T̄ operator exactly
disappears and the first nonzero correction is given again by the spin-four operatorT 2+T̄ 2 [13].
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7. Finite-size scaling of the susceptibility at t = 0

In the previous section, we have discussed several thermal quantities at the critical point
and verified that the observed behaviour is consistent with the RG and CFT predictions and
the conjectures we have made. Here, we want to discuss the finite-size behaviour of the
susceptibility on the square lattice, and we will check that the correction coefficients depend
on the shape of the domain as predicted by the spin nature of the operators.

For this purpose, we study two different finite square lattices in order to verify the
dependence of the corrections on the domain:

D
(A)
M = {

(n0, n1) ∈ Z
2, 0 � n1, n2 � M − 1

}
(7.1)

D
(B)
M = {

(n0, n1) ∈ Z
2, 0 � n1 + n2 � 2M − 1, 0 � n1 − n2 � 2M − 1

}
. (7.2)

In both cases the domain is a square: the first one has boundaries that are parallel to the lattice
axes and size L = M , while the second one is rotated by 45◦ and has size L = M

√
2. We use

periodic boundary conditions. For domain (A) such conditions are obvious, for domain (B)
we identify (n1, n2) with (n1 +M,n2 +M) and (n1 +M,n2 −M).

7.1. Renormalization-group analysis

The finite-size scaling behaviour of the susceptibility can be derived easily, starting from
(6.6). As we have already stated, such an expansion misses some important corrections
proportional to higher powers of logL. However, they should only be of interest if we analyse
the asymptotic behaviour of χ for τ → 0. Here, we consider χ at the critical point and thus
such corrections should vanish.

A simple computation gives at the critical point

χL(0, 0) = ∂2fb

∂h2

∣∣∣∣
τ=h=0

+
1

L2

∑
k∈[I ],[ε]

λk(0)LykWk({xj}) +
1

L2

∑
ik∈[σ ]

Lyi+ykWik({xj }) (7.3)

where the functions depend only on the identity-family scaling fields, xj ≡ µj(0)Lyj = Lyj ,
and we have used the normalization conditions vi(0) = 1, µj (0) = 1 for spin- and identity-
family scaling fields.

Since yj = 2n − 1
8 for the [σ ]-family operators and yj = 2n for the identity-family

operators, where n is an integer, we have

1

L2

∑
ik∈[σ ]

Lyi+ykWik({xj }) = L7/4
∞∑
k=0

ck

L2k
(7.4)

i.e. the corrections contain only even powers of L. On the square lattice, we do not anticipate
any cancellation, i.e. we expect ck �= 0 for all k. Indeed, the leading correction is due to the
operator T 2 + T̄ 2, which has y = −2, and thus gives rise to corrections involving all powers of
L−2. On the triangular lattice instead we expect c1 = 0, because of conjecture (d0). All other
terms are expected to be nonvanishing. Indeed, the presence of the spin-six operator T 3 + T̄ 3

generates terms L−4n, while the presence of the spin-six operatorQσ
6 + Q̄σ

6 together with the
previous one generates terms L−6−4n.

Let us now consider the term that contains a sum over all identity- and energy-family
operators. We expect in this case all powers of L−1, i.e.

1

L2

∑
k∈[I ],[ε]

λk(0)LykWk({xj}) = 1

L

∞∑
k=0

dk

Lk
. (7.5)
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On the square lattice, we should have d1 = 0. Indeed, the leading energy-family scaling field
is associated with the temperature and gives a contribution of the form

1

L2
λt (0)LWt({xj }) ∼ 1

L

(
a +

b

L2
+
c

L4
+ · · ·

)
(7.6)

and thus generates all even terms in (7.5). The odd terms in (7.5) are generated by the
identity-family operators, the leading one being T 2 + T̄ 2. It gives

1

L2
λ1(0)L−2W1({xj}) ∼ 1

L

(
a

L3
+
b

L5
+
c

L7
+ · · ·

)
(7.7)

and thus generates all odd terms except the first one. Hence d1 = 0. Note that cancellation
follows from CFT alone and does not require any additional hypothesis.

On the triangular lattice, the discussion is similar although a little more complicated. We
predict d1 = d2 = d3 = d7 = 0. The condition d1 = 0 does not require any conjecture, while
d2 = 0 implies the validity of conjecture (d0). Much more interesting is to check whether
d3 = d7 = 0, since the vanishing of these coefficients implies λT T̄ (0) = 0 and λ(0) = 0
for the operator QI

4Q̄
I
4. Thus, the analysis of χ on the triangular lattice would provide some

additional evidence for or rule out the conjectures (d1) and (d2).

7.2. The transfer-matrix calculation

From the previous discussion, we can write on the square lattice

χL(0, 0) = L7/4
(
c0 +

c1

L2
+
c2

L4

)
+D0 + L−1

(
d0 +

d2

L2
+
d3

L3

)
+O(L−17/4, L−5). (7.8)

The constantD0 is lattice and geometry independent being generated by the bulk free energy,
and it is given by Bf (0). Explicitly

D0 = Bf (0) ≈ −0.104 133 245 093 831 026 452 160 126 860 473 433 716 236 727 314.

(7.9)

The other constants depend on the geometry of the system and in general are expected to
be different for the two domains (A) and (B). However, this should depend on the type of
operator that generates them. If a term is associated with a spin-zero operator its value should
be identical in both geometries, while if it is the first contribution of a spin-four operator we
expect a dependence of the form cos 4θ , where θ is the angle between the boundaries of the
domain and the lattice axes. For our specific case, since θ = π

4 we expect the coefficient to
change sign. Therefore, we predict

cA0 = cB0 cA1 = −cB1 dA0 = dB0 . (7.10)

Indeed, c0 and d0 are related to the magnetic and to the thermal scaling fields that have both
spin zero. On the other hand, c1 is related to the leading identity-family operator with y = −2.
If the conjecture (d0) is correct, this term should be due only to the spin-four operator T 2 + T̄ 2

and thus, according to the previous discussion, it should differ by a sign in the two geometries.
In the following, we shall test the predictions (7.10). For this purpose, it is interesting to

note that the constants dA0 and dA2 can be predicted by using the results of [8, 9, 27]. Indeed,

λt (0)Wt({xj }) = d0 +
d2

L2
+O(L−3) (7.11)

since the leading irrelevant operator contributing to (7.5) has y = −2. Now λt (0) is given in
(4.23), while the leading contributions to the left-hand side can be derived from the energy at
the critical point, since

EL = 2
√

2
∂F

∂τ
(0) = 2

√
2
∂fb

∂τ

∣∣∣∣
τ=h=0

+
2
√

2

L
Wt({xj }) +O(L−5). (7.12)
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Table 1. Numerical estimate of the magnetic susceptibility for geometry (A). In the second column,
we give the results obtained by differentiation of the free energy and in the third column those
obtained by summing the time-slice two-point correlation function.

L χ χ

4 12.181 742 537 099 12.181 742 537 098 76
5 18.092 431 830 874 18.092 431 830 873 97
6 24.959 397 280 867 24.959 397 280 866 72
7 32.740 662 899 119 32.740 662 899 118 72
8 41.402 340 799 629 41.402 340 799 631 27
9 50.915 891 978 613 50.915 891 978 613 91

10 61.256 768 274 856 61.256 768 274 858 05
11 72.403 538 830 976 72.403 538 830 975 85
12 84.337 262 930 730 84.337 262 930 726 81
13 97.041 023 059 667 97.041 023 059 664 30
14 110.499 570 854 40 110.499 570 854 393 3
15 124.699 054 324 25 124.699 054 324 247 8
16 139.626 804 325 71 139.626 804 325 709 1
17 155.271 164 846 86 155.271 164 846 852 3

For geometry (A), using the results of [8, 9, 27], we have

Wt({xj}) = wt1 +
1

L2
wt2 +O(L−4) (7.13)

where

wt1 = − 1√
2

θ2(0)θ3(0)θ4(0)

θ2(0) + θ3(0) + θ4(0)
≈ −0.220 065 581 798 270 538 286 514 481 651 (7.14)

wt2 = π3

96
√

2

θ2(0)θ3(0)θ4(0)
[
θ2(0)9 + θ3(0)9 + θ4(0)9

]
[θ2(0) + θ3(0) + θ4(0)]2

≈ 0.073 073 526 812 330 794 515 803 384 757 (7.15)

so that

dA0 ≈ 0.022 366 948 354 353 361 434 648 349 198 (7.16)

dA2 ≈ −0.007 427 021 467 537 379 563 283 082 599. (7.17)

Note that this calculation relies only on the RG and on the CFT classification of the operators,
but does not make use of any of the additional conjectures.

In order to check equations (7.8) and (7.10), we performed a transfer-matrix (TM)
calculation of the susceptibility. Note that in general it is more difficult to perform a TM
calculation in the case where both sizes of the lattice are finite than in the case where one of
them is infinite, since one has to keep into account all the eigenvalues of the TM.

7.2.1. Numerical results. Let us see in detail the two cases that we studied:

• Geometry (A). In this case, we computed χ on lattices of sizes up to L = 17. In order
to test our methods, we evaluated the susceptibility in two ways, by direct differentiation
of the free energy and by using the fluctuation–dissipation theorem, i.e. by summing the
two-point function. The results are reported in table 1. By comparing the two columns,
one can estimate the size of the systematic errors.
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Table 2. Numerical result for the inverse of the magnetic susceptibility for geometry (B).

M 1/χ

2 0.149 678 741 567 431
3 0.073 301 790 137 056
4 0.044 241 139 068 172
5 0.029 917 172 878 427
6 0.021 735 601 983 740
7 0.016 591 966 498 537
8 0.013 132 015 183 494
9 0.010 684 547 791 392

10 0.008 884 576 737 074
11 0.007 519 096 948 920
12 0.006 456 674 647 995

• Geometry (B). In order to study geometry (B) we used the following trick. As a first step,
we performed a decimation of the lattice, i.e. every second spin was integrated. In this way,
the number of spins is reduced by half. The price one has to pay is that the Hamiltonian
becomes more complicated and contains, in addition to the nearest-neighbour interaction,
a next-to-nearest neighbour and a four-point interaction. In the presence of an external
field also a three-point term arises.
However, now the axes of the decimated lattice are parallel to the axes of the torus. Also,
the new Hamiltonian only couples neighbouring time slices. Therefore, we can apply the
same TM methods used in geometry (A).
Our numerical results are given in table 2. We computed the magnetic susceptibility by
differentiation of the free energy. The largest lattice has M = 12, which corresponds to
L = 16.98, and is thus completely equivalent to the largest lattice used in geometry (A).

7.2.2. Analysis of the data. We will now use the TM data to check the theoretical predictions.
We expect that the error induced by the error on χ given in tables 1 and 2 is small compared
to that due to the neglected higher-order corrections in (7.8). Therefore, instead of performing
a fit, we considered as many data points as the number of free parameters of the ansatz,
and then required the ansatz to be exact for them. This gives a system of equations that is
then solved for the free parameters. We always used consecutive values of L, i.e. L1 = L,
L2 = L − 1, . . . , Ln = L − n + 1, where n is the number of free parameters. Errors were
estimated from the variation of the results with the lattice size and by comparison of different
ansätze.

As a preliminary test, we checked that y = −2 for the leading correction to scaling. For
this purpose, we studied the ansatz

χL(0, 0) = L7/4 (c0 + c1L
y
)

+D0 (7.18)

with c0, c1, and y as free parameters. The results are summarized in table 3. For both
geometries, the numerical result for y approaches −2 as L increases. For our largest lattice
sizes, the deviation from −2 is about 1%. In the following analysis, we shall assume y = −2.

Next we analysed the data with (7.8). For geometry (A), by using the known values of
D0, d0 and d2, we found

cA0 = 1.091 950 56(4) (7.19)

cA1 = −0.079 14(5) (7.20)
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Table 3. Numerical results from the ansatz (7.18) in geometries (A) and (B).

c0 c1 y

Geometry (A)
L

12 1.091 9299 −0.0964 −2.102
13 1.091 9370 −0.0915 −2.076
14 1.091 9414 −0.0881 −2.057
15 1.091 9441 −0.0857 −2.044
16 1.091 9460 −0.0838 −2.034
17 1.091 9472 −0.0823 −2.026

Geometry (B)
M

8 1.091 9297 0.0689 −1.922
9 1.091 9388 0.0720 −1.946

10 1.091 9435 0.0743 −1.962
11 1.091 9461 0.0761 −1.973
12 1.091 9477 0.0775 −1.982

where the quoted uncertainties were obtained by comparing the results of the ansatz (7.8) with
those obtained by adding c3 as a free parameter.

For geometry (B), by using the known value of D0, we obtain

cB0 = 1.091 950 4(2) (7.21)

cB1 = 0.0794(4) (7.22)

dB0 = 0.019(5). (7.23)

Our predictions (7.10) appear to be very well satisfied. Moreover, our result for c0 is in good
agreement with, although much more precise than, the estimate12 of [22], c0 = 1.092 10(11).

If we assume dB0 = dA0 and use (7.16), we obtain the more precise estimate

cB0 = 1.091 950 6(2) (7.24)

cB1 = 0.0790(2) (7.25)

where the error was obtained by comparing the results with and without the parameter d2.
From the above analysis we see that, within the errors, the coefficients of the 1/L2

correction are equal in magnitude and opposite in sign for the two geometries. Since the two
lattices are rotated by π/4 this implies that this correction is completely due to the spin-four
operator T 2 + T̄ 2 and that the scalar operator T T̄ is absent, in agreement with conjecture (d0).

8. Concluding remarks and open issues

In this paper, we have discussed the presently available results for the corrections to scaling in
the two-dimensional Ising model. We have shown that all results are in agreement with the RG
and CFT predictions. The only missing point here is a complete analysis of the RG resonances
and consequently an extension of the scaling forms (4.1) and (6.6) to take into account the
logarithmic structure found in [6]. We have also shown that the existence of an exact symmetry
12 We report here the result of their fit with � = 7/4, since this is the correct theoretical behaviour.
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in the lattice models that map the high-temperature phase onto the low-temperature one plays
a very important role and explains the symmetry properties of the results.

However, the lattice Ising model shows also features that are not predicted by CFT and
RG and that can be explained if some additional conjectures are made. A list of these is
reported in section 4.1. Let us summarize the evidence we have:

• Conjectures (a) and (b). They allow us to explain the symmetry properties under τ → −τ
of the free energy and of its derivatives for h = 0. Further evidence may be obtained by
analysing χ on the triangular lattice and checking whether the functions F̂±(τ ) are even
in τ .

• Conjecture (c1). The functions f̃± do not depend on the [σ ]-family fields. This is
supported by the exact known results for F(τ, 0) and M(τ, 0) and by the results of [6].
Further evidence is obtained from the absence of a leading logarithmic correction in
higher-point correlation functions [10, 11].

• Conjecture (c2). The functions f̃± are constants (this is the original conjecture of [1]).
The independence of f̃± from the Z2-even scaling fields is supported by the finite-size
results of [8, 9] discussed in section 6. The conjecture follows from this observation and
conjecture (c1). Conjecture (c2), together with the conjectured formula (6.14) can be
checked further by computing the logarithmic term(s) in ∂nF/∂τn at the critical point for
n > 2.

• Conjecture (d0). The nonlinear scaling field of T T̄ vanishes at the critical point. On
the square lattice we have ample evidence in favour of (d0), which is the only conjecture
needed to explain the existing results. Indeed, it is supported by

(1) the infinite-volume results of [6];
(2) the behaviour of ξ(θ) discussed in section 5.1;
(3) the dependence of χ at the critical point from the boundary conditions, see section 7;
(4) the behaviour of the two-point function at the critical point, see [34];
(5) the behaviour of the free energy on the critical isotherm, see [3];

Moreover, all triangular-lattice results are compatible with it. For these reasons, we
believe it is more than a conjecture and it is essentially proved. It is interesting to note that
a similar cancellation is observed in the finite-size scaling behaviour of the free energy
and of the mass spectrum in the one-dimensional Ising quantum chain, see [13].

• Conjecture (d1). The operator T T̄ is decoupled. We have evidence for the validity of this
conjecture in the triangular-lattice Ising model. The analysis of the correlation length ξ(θ)
on the triangular lattice shows that µT T̄ (0) vanishes at least up to terms of order O(τ 6).
There are several calculations that should be feasible and would add further support to
the validity of (d1) on the triangular lattice:

(1) The extension of the results of [6] to the triangular lattice.
(2) The study of the dependence on the boundary conditions of the observables studied

in section 6 at the critical point on the triangular lattice. This would unambiguously
identify the spin of the leading irrelevant operator.

(3) The study of χ at the critical point on a triangular lattice. It is particularly important
to verify whether d3, cf (7.5), vanishes or not. If it does, it provides the only available
evidence for λT T̄ (0) = 0, and thus it would strengthen the conjecture.

• Conjecture (d2). Only nonzero-spin operators are present. We have evidence for this
conjecture on the triangular lattice. The absence of spin-zero operators besides T T̄ is
based on the results of sections 5.2 and 6 where we showed that the existing exact results
require µ(0) = 0 for the spin-zero identity-family operator QI

4Q̄
I
4 with y = −6. The

studies (1) and (2) mentioned at the previous point would further check the conjecture. In
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particular, they can verify whether v(0) = 0 for the spin-zero [σ ]-family operatorQσ
3 Q̄

σ
3

with y = −4 − 1
8 .

Of course, as they stand, these conjectures are just ‘ad hoc’ prescriptions, whose only
merit is that of providing an economical way to explain all existing results. It would be very
important to understand if there is some symmetry argument that could explain them.

There remain several open questions. First of all, one may ask whether these conjectures
apply to the nearest-neighbour Ising model on any regular lattice or whether some of them
depend on the lattice structure. Another important question is how important the nearest-
neighbour condition is: do some of these conjectures apply also to the Ising model with
extended interactions? Finally, one may ask whether these cancellations are also observed
in other models. Concerning this last question, we should mention the results of [35] for
the three-state Potts quantum chain, which were compared with the CFT predictions in [13].
Again, the T T̄ contribution turns out to be compatible with zero. However, at variance with
the Ising case, there is, at next-to-leading order, a clear signature of a finite-size correction
due to a scalar irrelevant operator. Even if the Potts case is slightly different from the Ising
one, since this irrelevant operator is actually a primary operator (more precisely is the one
with conformal weight h = 7

5 ), this result indicates that our conjecture (d2), if true, is specific
for the Ising model and could be somehow related to the fact that the model is soluble on the
lattice. On the other hand, the vanishing of the correction due to the T T̄ operator seems to be a
more general phenomenon. In order to understand the validity of (d0), it would be interesting
to extend these analyses to the generic q-state Potts model or to other specific values of q (for
instance, to percolation).

Acknowledgment

We thank Malte Henkel for several useful suggestions.

References

[1] Aharony A and Fisher M E 1980 Phys. Rev. Lett. 45 679
Aharony A and Fisher M E 1983 Phys. Rev. B 27 4394

[2] Gartenhaus S and McCullough W S 1987 Phys. Rev. B 35 3299
Gartenhaus S and McCullough W S 1988 Phys. Rev. B 38 11688

[3] Caselle M and Hasenbusch M 2000 Nucl. Phys. B 579 667
[4] Campostrini M, Pelissetto A, Rossi P and Vicari E 1998 Phys. Rev. E 57 184
[5] Nickel B 1999 J. Phys. A: Math. Gen. 32 3889

Nickel B 2000 J. Phys. A: Math. Gen. 33 1693
[6] Orrick W P, Nickel B, Guttmann A J and Perk J H H 2001 J. Stat. Phys. 102 795
[7] Izmailian N Sh and Hu C-K 2001 Phys. Rev. Lett. 86 5160
[8] Izmailian N Sh and Hu C-K 2002 Phys. Rev. E 65 036103
[9] Salas J 2001 J. Phys. A: Math. Gen. 34 1311

[10] Caselle M, Hasenbusch M, Pelissetto A and Vicari E 2000 J. Phys. A: Math. Gen. 33 8171
[11] Caselle M, Hasenbusch M, Pelissetto A and Vicari E 2001 J. Phys. A: Math. Gen. 34 2923
[12] Calabrese P, Caselle M, Celi A, Pelissetto A and Vicari E 2000 J. Phys. A: Math. Gen. 33 8155
[13] Reinicke P 1987 J. Phys. A: Math. Gen. 20 5325
[14] McCoy B M and Wu T T 1973 The Two Dimensional Ising Model (Cambridge, MA: Harvard University Press)

McCoy B M 1995 Statistical Mechanics and Field Theory ed V V Bazhanov and C J Burden (Singapore: World
Scientific)

[15] Stephenson J 1964 J. Math. Phys. 5 1009
[16] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333
[17] Reinicke P 1987 J. Phys. A: Math. Gen. 20 4501
[18] Henkel M 1999 Conformal Invariance and Critical Phenomena (Berlin: Spinger)



4888 M Caselle et al

[19] Wegner F J 1976 Phase Transitions and Critical Phenomena vol 6, ed C Domb and M Green (New York:
Academic) p 7

[20] Privman V, Hohenberg P C and Aharony A 1991 Phase Transitions and Critical Phenomena vol 14, ed C Domb
and J L Lebowitz (London: Academic)

[21] Privman V (ed) 1990 Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World
Scientific)

[22] Salas J and Sokal A D 1999 Preprint cond-mat/9904038v1
Salas J and Sokal A D 2000 J. Stat. Phys. 98 551

[23] Cheng H and Wu T T 1967 Phys. Rev. 164 719
[24] Stephenson J 1970 J. Math. Phys. 11 413
[25] Campostrini M, Pelissetto A, Rossi P and Vicari E 1996 Phys. Rev. B 54 7301
[26] de Queiroz S L A 2000 J. Phys. A: Math. Gen. 33 721
[27] Ferdinand A E and Fisher M E 1969 Phys. Rev. 185 832
[28] Hu C-K, Chen J-A, Izmailian N Sh and Kleban P 1999 Phys. Rev. E 60 6491
[29] Janke W and Kenna R 2002 Phys. Rev. B 65 064110
[30] Privman V and Rudnick J 1986 J. Phys. A: Math. Gen. 19 L1215
[31] Guo H and Jasnow D 1987 Phys. Rev. B 35 1846

Guo H and Jasnow D 1989 Phys. Rev. E 39 753
[32] Burkhardt T W and Guim I 1987 Phys. Rev. B 35 1799
[33] Henkel M 1987 J. Phys. A: Math. Gen. 20 995
[34] Caselle M, Grinza P and Magnoli N 2001 J. Phys. A: Math. Gen. 34 8733
[35] von Gehlen G, Rittenberg V and Vescan T 1987 J. Phys. A: Math. Gen. 20 2577


